СТАТЬИ И ПУБЛИКАЦИИ

Вход или Регистрация

ПОМОЩЬ В ПАТЕНТОВАНИИ НАУЧНО-ТЕХНИЧЕСКИЙ ФОРУМ Научно-техническая библиотекаНаучно-техническая библиотека SciTecLibrary
 
Cтатьи и Публикации    Теория Относительности Эйнштейна и ее критика О СИСТЕМНОЙ РАЗМЕРНОСТНОЙ ВЗАИМОСВЯЗИ ФИЗИЧЕСКИХ ВЕЛИЧИН

О СИСТЕМНОЙ РАЗМЕРНОСТНОЙ ВЗАИМОСВЯЗИ ФИЗИЧЕСКИХ ВЕЛИЧИН

© Чуев Анатолий Степанович, к.т.н., доцент кафедры естествознания

Государственного университета управления,

Контакт с автором: chuev@imis.ru

Телефоны: (095) раб. 377-02-42, дом. 527-81-38 (после 19-00)

www.chuev.narod.ru


АННОТАЦИЯ

В развитие ранее проведенных автором исследований системы физических величин, представленных в размерности LT (длина-время), показывается расширенный вариант системы и проводится исследование этого расширенного варианта, с представлением его в привычной для большинства системе размерностей MLT, лежащей в основе системы СИ. При таком представлении некоторая часть физических величин камуфлируется размерностью и значением гравитационной постоянной, а также соотношением единиц массы и силы электрического тока, которые в системе LT были безразмерны и единичны. Однако все физические величины в системе остаются на своих местах, а между единицами их измерения или квантуемыми значениями сохраняются и даже становятся более явными закономерные соотношения, определяемые системой.

Показывается возможность нахождения неизвестных закономерных соотношений между различными физическими величинами, входящими в общую систему. На примере возможных силовых взаимодействий, которые по системе формально имеют право на существование, предсказано существование ряда новых силовых взаимодействий между отдельными физическими величинами, разнесенными в пространстве. Предсказывается также существование внепространственных силовых взаимодействий, возможных по системе, между изменяющимися во времени физическими величинами. Автор полагает, что такие взаимодействия могут не подчиняться принципу ограничения скорости их распространения - скоростью света.


Невозмутимый строй во всем,

Созвучье полное в природе, -

Лишь в нашей призрачной свободе

Разлад мы с нею сознаем.

Ф.И. Тютчев. 

Будущее естествознание будет не мыслимо

без системы физических величин точно так же,

как сегодня химия и атомная физика -

не мыслимы без системы Д.И. Менделеева.

Автор.


Раздел 1. Общая система физических величин, ее особенности и свойства 

Исследованиями автора установлено, что система физических величин, описанная им в книге “Физическая картина мира в размерности “длина – время” /1/, представляет собой центральную часть более общей системы, которую можно представить в несколько ином исполнении (см. иллюстрации общей системы (рис.1) и ее центральной части (рис.2), представленных в размерности LT).

В общей системе (рис.1) определилось местонахождение мощности, расположенной вне центральной части системы. В ранее исследовавшуюся систему (рис.2) физическая величина - мощность не вводилась, поскольку это нарушило бы гармоничность и целостность той системы. В общей системе большую значимость приобрели вновь обозначившиеся периферийные элементы: кривизна пространства и градиент течения времени. Появилась такая экзотическая физическая величина – как “объем времени”, о чем предсказывалось еще в работах Р. Бартини. Все периферийные элементы общей системы, по мнению автора, имеют какую-то свою общность и специально выделены.

Примечательно, что обнаруженная система физических величин, в общем-то, и не зависит от применяемой системы размерностей. Например, в системе СИ гравитационная постоянная, электрическая постоянная, магнитная постоянная и электрический заряд будут занимать те же позиции, что и в системе LT, если масса и сила электрического тока станут (как это, по сути, требуется) измеряться в одинаковых единицах. Общая система физических величин в размерности MLT (совпадающей здесь с СИ) представлена на рис.3.

Нетрудно заметить, что у многих физических величин в этой системе появились дополнительные сомножители в виде гравитационной постоянной – G–1 или соотношения единиц массы и силы электрического тока – (M0/I0), которые в LT системе безразмерны и равны единице.

Система физических величин, вне зависимости от того в какой системе размерностей она выполнена, построена таким образом, что представляет собой сеть закономерно взаимосвязанных близ – расположенных элементов через три параметра: скорость, время и пространственную протяженность (длину). В системе легко видны простейшие взаимосвязи между элементами: импульс есть произведение массы на скорость, энергия есть произведение импульса на скорость; мощность есть энергия, поделенная на время; сила есть энергия, поделенная на длину и так далее.

Однако система представляет собой наглядную иллюстрацию и более сложных физических закономерностей, а также выражает органический принцип мироустройства - “все в каждом и каждое во всем”. Каждый элемент системы по размерности (а это значит по величине единичного значения или кванта) есть среднее пропорциональное для любых двух равноотстоящих от него физических величин по любому направлению системы.

Например, импульс по размерности (по сути – тоже) есть среднее пропорциональное, связывающее массу и энергию. Но тот же импульс определяется и как среднее пропорциональное для следующих величин: элемента электрического тока и силы, действия потенциального и гравитационного потенциала, магнитного момента и натяжения. Можно привести и иные пары величин, определяющих импульс. Нельзя забывать только о том, что в системе, использующей размерности СИ некоторые физические величины имеют дополнительные сомножители.

В системе можно обнаружить выражение известных силовых закономерностей. Например, квадрат отношения массы к длине равен произведению силы на величину, обратную гравитационной постоянной. Это есть закон Всемирного тяготения, открытый И. Ньютоном. Другой пример – закон Кулона: квадрат отношения электрического заряда к длине есть произведение силы на электрическую постоянную, которые в нашей системе равноотстоят и расположены симметрично относительно первой величины. Аналогично выражаем закон Ампера для взаимодействия электрических токов.

То же правило действует и в отношение закона Джоуля-Ленца. Произведение энергии на пространственную протяженность, представляемую здесь отношением электрической проводимости к времени, равно квадрату силы электрического тока.

Мы рассмотрели выражения для силы в различных полевых взаимодействиях. Но та же сила может быть выражена и как корень квадратный из произведений: мощности на массовый расход, энергии на натяжение, действия потенциального на давление и так далее. То есть каждый элемент системы имеет закономерные взаимосвязи со всеми другими элементами, только не все эти взаимосвязи ранее можно было видеть при отсутствии общей системы физических величин.

Зачастую взаимосвязи между физическими величинами обнаруживаются не как взаимосвязь между единичными значениями, а как взаимосвязь между квантованными значениями. По всей видимости, в недеформированных системах эти кванты и должны иметь единичные значения. Например, квадрат кванта проводимости Холла определяется (с поправкой на 2α) как произведение ε0 и (μ0)-1. Произведение кванта проводимости Холла на постоянную Планка, являющуюся квантом действия актуального, равно квадрату элементарного электрического заряда. И так далее - по каждому направлению системы, и на разных расстояниях от определяемой величины.

Тем самым наша система дает прекрасные эвристические возможности по открытию новых закономерностей Природы. Например, ускорение есть корень квадратный из произведения вихревого вращения на массовый расход. И эта закономерность обязательно где-то проявляет себя в Природе, только этого мы еще не знаем или не замечаем.

Очень интересна определимость единиц (а может быть квантов) времени и пространственной протяженности – значениями фундаментальных физических полевых констант, а также такими парами величин как градиент времени и проводимость Холла, кривизна пространства и его объем, объем времени и угловая скорость.

В общей LT– системе физических величин, а также в системе с размерностями системы СИ, есть и иные размерностные соотношения между элементами, но, по всей видимости, они определяются первым отмеченным свойством – центральный элемент есть среднее пропорциональное между элементами, равноудаленными от него.

Поясним сказанное. По любому из направлений расположения элементов системы, каждый элемент по размерности равен:

Отмеченная закономерность может быть продолжена и действует она не только в горизонтальных рядах элементов, но и по любому иному выделенному направлению системы – вертикальному или косоугольно расположенному.

Следует отметить, что для горизонтальных рядов системы, соотношение соседних элементов - соответствует скорости в определенной степени. Чаще всего это оказывается скорость света. То есть каждый элемент системы, в принципе, выражаем через любой другой элемент того же ряда и скорость в определенной степени. Заметим также, что любой элемент нашей системы можно выразить и через элементы других рядов, путем умножения их на время, длину или ускорение в определенной степени. При этом в системе физических величин имеются выделенные направления, которые подобны выделенным направлениям (анизотропии) в кристаллах.

Анализируя нашу систему в размерности MLT (СИ) можно заметить, что масса присутствует в каждом элементе системы (рис.3) в первой степени. Таким образом, масса здесь в принципе не влияет на соотношение размерностей элементов системы и ее возможно безболезненно сократить. Это говорит о том, что в любом интегральном (совокупном или целостном) описании физического мира в каждом элементе системы возможно присутствие одной и той же константы или любой физической величины. Аналог этому – присутствие интегральной постоянной в вычислениях интегралов.

Если убрать значение массы в каждом элементе системы по рис.3, то получим определенный вариант LT– системы размерностей физических величин, где безразмерной величиной окажется масса. Такой вариант описания физического мира тоже возможен, но он будет в определенной степени деформированным. Из работ Максвелла известно, что размерность массы должна быть L3T–2. Если умножить на указанную размерность каждый элемент обозначенной деформированной системы (на это мы имеем право), то мы придем к истинному варианту системы физических величин, представленному на рис.1.

Ранее отмечалось /1/, что истинность нашей системы подтверждается обнаруженным в ней замечательным системным свойством, подобным свойству системы химических элементов Д.И. Менделеева. А именно – свойства элементов определяются их местоположением в системе. Отмечалось, что в центральной части системы имеется ряд сохраняющихся физических величин, а также ряд квантуемых и константных величин.

В заключение общих пояснений первого раздела следует отметить еще раз самое удивительное качество системы, может быть, самое главное – каждый из элементов системы, обязательно определяет и все другие ее элементы. Тем самым система иллюстрирует принцип органического (живого) строения Природы – все во всем. Именно таким образом взаимосвязаны все физические величины, входящие в систему.


Красота – есть сияние истины.

Г.В.Ф. Гегель

Верное предсказание о том, что должно быть -

и в науке и в жизни ценнее, чем уже

совершенное открытие того, что есть.

Само слово уже все говорит само за себя.

Автор


Раздел 2. СИСТЕМА ФИЗИЧЕСКИХ ВЕЛИЧИН В РАЗМЕРНОСТИ MLT (СИ), РАСЧЕТЫ И ПОЯСНЕНИЯ.

Обнаружение системной взаимосвязи физических величин, представленных в LT размерности, не всеми воспринимается как выявление действительно существующей и глобальной природной закономерности. Большинство способны воспринимать все – только в привычной для себя системе СИ. Покажем на цифровом и фактическом материале, что наша система физических величин, будучи выполненной в привычной размерности MLT (СИ), тоже способна выражать основные природные закономерности.

При проведении расчетов будем использовать значение гравитационной постоянной G = 8,3850238*10–10 м3кг–1с–2 (закон всемирного тяготения записывается в виде F = Gm1m2/(4pr2)), а также переводное соотношение между единицами измерения массы и силы электрического тока в системе СИ, равное M0/I0 = 4,900778848*10–36 кг/А. Эти результаты получены в предшествующих исследованиях автора и изложены в упомянутой книге /1/. Соотношение единиц инертной массы и силы электрического тока в системе СИ определяется формульным выражением:

(1)

где qe – элементарный электрический заряд (электрона);

μ0 – магнитная постоянная;

α- постоянная тонкой структуры;

С – скорость света в вакууме.

Возьмем в нашей системе (рис.3) три физических величины в ряду квантуемых: электрический заряд*(M0/I0) – центральная физическая величина, а также: действие актуальное и проводимость Холла*(M0/I0) – физические величины, равноотстоящие от обозначенной центральной величины.

Соотношение между ними (вернее между их квантами), по выше рассмотренному правилу, будет следующим:

(2) 

Дополнительные сомножители сокращаются, и мы получаем известное /2/ выражение

(3)

В формулах (2) и (3) обозначено:

- квант холловского сопротивления;

h - постоянная Планка;

qe – элементарный электрический заряд (электрона).

Таким образом, заключаем, что в приведенной системе физических величин с размерностями системы СИ, между элементами системы, несмотря на их деформацию (в сравнении с LT – системой), тоже соблюдаются аналогичные системные соотношения.

Посмотрим и убедимся в наличии системной взаимосвязи физических величин с размерностями СИ и в других частях нашей системы. Вначале, для удобства, рассмотрим имеющиеся соотношения в ряду квантуемых и константных величин, все значения которых нам хорошо известны.

В таблице 1 приведены системные размерностные соотношения и известные или найденные точные аналитические соотношения для физических величин этого ряда. В третьей группе соотношений одновременно применены некоторые сокращения полученных выражений.

Таблица 1

Системная и точная аналитическая взаимосвязь некоторых константных физических величин в размерности MLT (СИ) 

№ п/п

Размерностные соотношения физических величин в системе

Точные аналитические соотношения физических величин

 1.1

 

1.2

 

1.3

 

1.4

 

2.1

 

2.2

 

2.3

 

2.4

 

2.5

 

3.1

 

3.2

 

3.3

 

3.4

 

3.5

 

Следует отметить, что из представленных точных аналитических соотношений таблицы 1, общеизвестно только соотношение 2.1. Другие точные соотношения определялись подбором числовых коэффициентов и, в общем-то, в системе СИ не являются известными. Очень хорошо видно – какими должны быть эти зависимости в недеформированной системе, где масса и сила электрического тока измерялись бы в одинаковых величинах.

Данные таблицы 1 иллюстрируют, что очевидная взаимосвязь физических величин в системе отражает их точные аналитические соотношения с небольшими поправками, как правило, целочисленными или с участием α - постоянной тонкой структуры. О роли постоянной тонкой структуры во взаимосвязи физических величин и, особенно, во взаимосвязях и значениях фундаментальных физических констант более подробно освещается в работе автора /3/.

Очевидно, что наша система физических величин позволяет обнаруживать взаимосвязи между любыми физическими величинами, то есть, в принципе, позволяет открывать новые природные закономерности. А это весьма заманчиво – найти формальный механизм открытия нового.

Обратим внимание на выражения 1.4 и 2.5 таблицы 1. Они выделяются в ряду остальных большим степенным показателем при 2α. Это указывает на то, что в общей системе физических величин вместо кванта проводимости Холла, по-видимому, должна стоять другая физическая величина – электромагнитная проводимость вакуума. Эти две физические величины как раз и связаны числовым значением, равным 2α.

Если бы мы не преобразовывали точную аналитическую зависимость 3.5, то и в ней получили бы факт, указывающий на возможную целесообразность замены в системе кванта проводимости Холла – на электромагнитную проводимость вакуума. Указанное обстоятельство требует проведения отдельного внимательного и тщательного рассмотрения, но мы пойдем далее в нашем исследовании взаимосвязей физических величин – элементов системы, представленной на рис.3.

Следует отметить, что все полученные нами зависимости, несмотря на их новизну, при раскрытии соотношения и применении ряда других известных соотношений (между квантом сопротивления Холла и элементарным электрическим зарядом, между квадратом заряда электрона и постоянной Планка), можно привести к известному /2/ выражению:

. (4)

Иногда его записывают в ином виде:

. (5)

Однако, ввиду наличия всеобщей взаимосвязи физических величин, так можно поступить, в принципе, с любой формулой, так как все физические величины выражаемы друг через друга и от любого нового соотношения – даже верного, при желании, можно избавиться.

Рассмотрим теперь другие направления системы, не столь известные по величине своих квантуемых или единичных значений элементов. Например, попробуем определить значение массы, находящаяся в нашей системе между квантом действия актуального (постоянной Планка) и скоростью/G (по всей видимости – скоростью света /G). Находим это соотношение:

(6)

и видим, что оно с введенными числовыми поправками 2 и α под корнем квадратным дает значение планковской массы в системе СИ, где = 2,176714095*10–8 кг /2/.

Можно заметить, что в другом выделенном направлении системы, масса расположена между квантом действия потенциального и (гравитационной постоянной)–1. В качестве кванта потенциального действия берем квант электростатических сил и находим искомое значение массы:

=1,859448128*10-9 кг. (7)

Если в знаменатель под корнем квадратным данного выражения ввести α, то мы опять получим планковское значение массы в системе СИ.

Казалось бы, этим мы определили, что место единичной (или квантуемой) массы в системе отношений между квантами физических величин должна занять планковская масса. Но проверяем массу по иному диагональному направлению системы, где масса расположена рядом с элементом электрического тока и магнитным моментом (не забываем, что они умножаются на значение ). Кванты последних величин имеют известные значения, поэтому пытаемся определить искомое значение массы:

=2,289439326*10–29 кг. (8)

В последнем выражении: IlКВквант элемента электрического тока;

μВ магнетон Бора.

Если числовое значение выражения (8) разделить на 8π, то получим массу электрона.

Таким образом, оказывается, что не все так однозначно. По одному выделенному направлению физическая величина квантуется или принимает одно значение, а по другому – иное. У нас по одному направлению системы оказалась расположена планковская масса, а по другому направлению, здесь же, оказывается масса электрона. С этой особенностью надо будет разбираться отдельно.

Полученную массу электрона можно определить выражением:

= 9,1093897*10–31 кг. (9)

С учетом (1) последнее выражение можно представить как

. (10)

Выражение (10) может служить еще одним определяющим уравнением для магнетона Бора.

В проводимых вычислениях было замечено, что отношение кванта протяженного элемента тока – к магнетону Бора, дает значение, обратное половине классического радиуса электрона.

(11)

Можно убедиться и в системе, что эти рядом расположенные величины, действительно соотносятся через длину (или длину в минус первой степени).

Если в выражении (9) вместо магнетона Бора взять значение ядерного магнетона, то получится масса протона. Тогда, по аналогии с выражением (11), можем определить классический радиус протона, который, как мы понимаем, окажется в 1836,152 раз меньше классического радиуса электрона, что уже отмечалось в работе /1/.

Обнаруженная взаимосвязь массы и размера элементарных частиц весьма интересна и требует какого-то физического или причинного объяснения.

Можно заметить, что масса расположена в одном диагональном ряду с электрическим зарядом*(M0/I0) и пространственным объемом*(G)–1. Определимся с характеристическим размером этого объема (без учета формы) для планковского значения массы. Составляем размерностное уравнение:

(12)

Отсюда определяем выражение для характеристического размера планковской массы. С уточнением числовым коэффициентом α, это значение равно:

= 1,481936667*10–36 м. (13)

Как видим, оно представляет собой единичное или планковское значение длины в Естественной кинематической системе размерностей (ЕКСР) /4/, которое связано со значением планковской длины в системе СИ выражением:

(14)

Поскольку мы встретились со значением планковской длины (пространственной протяженности), рассмотрим положение пространственной протяженности в системе физических величин. Составим уравнения размерностной связи этой физической величины и ближайших к ней элементов.

(15)

(16)

Представленные выражения преобразуются и точно выполняются, принимая, с вводимыми числовыми поправками, следующий вид:

(17)

. (18)

Данные выражения определяют единичную или планковскую длину в ЕКСР, числовое значение которой приведено в выражении (13).

По еще одному выделенному направлению системы пространственная протяженность/G симметрично располагается между электрическим зарядом*(M0/I0) и градиентом времени/G. По данному направлению определяем, что для планковской длины в значении (13) и заряда электрона – qe, градиент времени в системе СИ представляет собой величину, обратную скорости света.

(19)

Определимся теперь с квантованным или единичным значением времени в нашей системе. По аналогии с методикой выше проведенного поиска, запишем определяющие размерностные уравнения и найдем конечные выражения для кванта времени:

(20)

. (21)

Вычисления по этим формулам дают величину единичного или планковского времени в ЕКСР, равную

4,943208635*10–45 с. (22)

Можно продолжить наше исследование и по другим возможным выделенным направлениям системы.

Возьмем, например, физическую величину, обратную гравитационной постоянной (G–1). Она расположена в диагональном ряду системы – между электрической постоянной ε0 (умноженной на2) и объемной плотностью массы ρm. Первые две величины мы знаем, отсюда, с точностью до числового постоянного сомножителя, можем определить третью. Определяем ρm:

= 6,688249464*1099 кг/м3 . (23)

Это значение объемной плотности массы, чудовищное по своей величине и обычно не используемое в системе СИ, называют планковской плотностью массы. Имеется возможность определить его и через другие параметры. Заметим, что получаемое значение оказывается в α–1 раз больше чем единица плотности массы в ЕКСР.

В нашей системе находят отражение и известные силовые соотношения. Например, пользуясь системой, можно составить уравнения, отражающие силовые взаимодействия между физическими величинами по законам Ньютона, Кулона и Ампера.

Сила* или (24) 

Сила* или (25) 

Сила* или . (26) 

Здесь обозначено: G - гравитационная постоянная;

ε0 и μ0 – электрическая и магнитная постоянные;

r – расстояние между взаимодействующими объектами (характеризующимися, например, массой m или зарядом q);

I – сила электрического тока во взаимодействующих проводниках;

l – длина взаимодействующих проводников с током.

Из приведенного следует, что законы Ньютона, Кулона и Ампера в рассматриваемой системе находят свое отражение. Эти законы обнаруживаются на основе формальных правил, определяемых свойствами системы.

Повторим, что замечательным свойством нашей системы является то, что на основе обнаруженных формальных правил, она позволяет открывать и новые, неизвестные еще, силовые взаимодействия!

Например, физические величины: сила и гравитационный потенциал/G - симметрично расположены относительно центральной величины, представляющей собой импульс, деленный на длину. Из системы следует, что произведение двух первых величин равно квадрату третьей - центральной величины. Составляем размерностное уравнение:

. (27)

Это уравнение, записанное в виде:

, (28)

где , по идее, должно выражать неведомое до сих пор силовое взаимодействие движущихся масс, назовем его – гравидинамическим взаимодействием.

Из системы по рис.3 следует, что еще одно неизвестное силовое взаимодействие обнаруживается по направлению: сила объемная плотность массы, где на месте центрально расположенной величины оказываются ток массы или изменение массы, взаимодействующие (также как и привычные для нас физические величины) через пространственную протяженность. Отметим, что величина может представлять собою и вращение массы относительно ее собственного центра.

Необходимо отметить, что по данному выделенному направлению системы формально можно увидеть еще и взаимодействие объемных плотностей вращательного движения , которое не должно зависеть от пространственного расположения взаимодействующих субъектов. Это, может быть, математический казус, так как неменяющихся в пространстве объемных плотностей чего-либо мы не знаем или это нечто, связанное с физическим вакуумом, заполненным виртуальными частицами.

Еще одно направление, где открывается новое силовое взаимодействие – это направление: силаимпульсэлемент электрического тока*(M0/I0). Здесь возможно обнаружится давно предсказываемое (см., например, работы Акимова А. Е. и Шипова Г.И.) взаимодействие вращающихся и обращающихся масс.

Три новых гравидинамических взаимодействия, обнаруживаемых с помощью представленной системы, по всей видимости, должны описываться своими особенными полями. Как следует из системы, эти поля должны иметь свои константы взаимодействия, которые располагаются на местах следующих элементов системы: гравитационного потенциала/G, объемной плотности массы и элемента электрического тока*(M0/I0).

Указанные константы должны присутствовать в выражениях, описывающих эти силовые взаимодействия. Константы силовых взаимодействий могут присутствовать в двух вариантах – либо по типу вышерассмотренного гравитационного мю-нулевое, либо по типу электрической постоянной в законе Кулона. Во втором варианте константа поля записываться в знаменателе определяющего уравнения силы. Система показывает, что присутствие и запись констант силовых взаимодействий по типу электрической постоянной закона Кулона – более правильна. В противном случае константа силового взаимодействия будет присутствовать в системе с показателем в минус первой степени, а это как-то не вполне естественно.

Гравидинамическое взаимодействие движущихся масс, по аналогии с электродинамическим взаимодействием, было нами описано с использованием константы . Так его и оставим. Два других оставшихся гравидинамических взаимодействия запишем в более правильной форме:

(29)

(30)

В данных выражениях, согласно системы по рис.3, гравидинамические константы будут равны: ; .

Отметим, что в совокупности с известными константами (ε0 , μ0 и G), обнаруживаемые нами новые константы особенных силовых гравидинамических взаимодействий образуют в исследуемой системе (совместно с физической величиной “сила”) своеобразный “константно-силовой каркас” системы. Причем набор всевозможных силовых взаимодействий и их констант в данной системе – исчерпывающий.

Нельзя не отметить присутствия в системе определенной симметрии и красоты в расположении отмеченных константных элементов нашей системы и самих взаимодействующих субъектов. Как тут не вспомнить знаменитое выражение Гегеля: красота – есть сияние истины.

Красота и симметрия данной системы по настоящему станут действительными, если удастся открыть независящие от пространственного расположения (как следует из системы) силовые взаимодействия временных изменений следующих субъектов: действие актуальное, массовый расход (m/t) и вязкость динамическая. Величину (m/t) можно представить и вращением массы, а последняя физическая величина представляет собой также объемную плотность актуального действия. Константы указанных возможных внепространственных силовых взаимодействий располагаются в системе на месте элементов: действие потенциальное, давление и объемная плотность натяжений.

Если внимательно присмотреться, то в системе можно обнаружить аналогичные (внепространственные временные) силовые взаимодействия и для других физических величин. Например, гравитационный потенциал/G – является также константой внепространственного силового взаимодействия меняющихся во времени масс или вращающихся масс (m/t). Известная (гравитационная постоянная)–1 возможно является одновременно и константой внепространственного взаимодействия физических тел с меняющейся во времени инерционностью (m/v), хотя, что это такое - на сегодня не вполне понятно.

Попытаемся определить числовые значения некоторых обнаруженных нами констант силовых динамических гравитационных взаимодействий.

Гравитационное мю–нулевое определить легче всего, приняв скорость распространения гравитационных волн равной скорости света.

= 9,329597201*10–27 м/кг. (31)

На основании системных свойств определяем другую константу -

3,561583934*1095 кг/м3. (32)

Полученное числовое значение отличается от ранее полученного значения (23) на квадрат постоянной тонкой структуры. Значит оно, скорее всего, определено правильно!

Проверим это числовое значение еще по одному направлению нашей системы:

= 6,68824942*1099 кг/м3. (33)

Как видим, числовое значение выражения (23) подтверждается.

Константу сил динамического гравитационного взаимодействия вращающихся или обращающихся масс попытаемся определить из системы – как произведение кванта пространственного элемента электрического тока на соотношение (M0/I0):

= = = 3,225752398*10–44 кг м. (34)

Получили удивительный результат – константа динамического механического взаимодействия имеет чисто механическую размерность, что вполне естественно, но определяется произведением двух электрических величин. Не менее удивительно и то, что при таком значении коэффициента (34) данное силовое взаимодействие должно быть чудовищно большим по величине, чего мы как-то не наблюдаем в жизни.

Как вариант объяснения этому - может быть наше неумение создавать механические системы с обращающимися массами, поэтому мы и не наблюдаем их взаимодействий. Ведь все наши системы с якобы обращающейся массой или опираются на что-либо массивное или обязательно имеют обратно движущуюся противомассу. Другим предположительным вариантом объяснения полученного результата может быть то, что это взаимодействие, возможно, возникает только при изменении взаимодействующих параметров и мы его не наблюдаем в системах с постоянным вращательным движением. Причем это изменение может быть пространственным – как в вихре.

Опыт наблюдения физической картины мира атомов говорит нам о том, что излучение (или поглощение) фотонов – переносчиков электромагнитного взаимодействия, возникает именно при изменении момента количества вращательного движения орбитальных электронов. Силы, которые затем способны двигать излученный фотон на чудовищно большие расстояния и должны быть чудовищными по своей величине. Похоже, что эти силы мы называем силами инерции. Возможно, что силы инерции и существуют благодаря наличию в любой материи внутреннего (вероятно, вихревого) вращательного движения.

Также вполне возможно, что, как и в примере с вычислением элементарного кванта массы, мы имеем дело с двойственным (или тройственным, если не более) значением коэффициента . Например, одно значение соответствует константе пространственного силового взаимодействия обращающихся масс, а другое значение соответствует непосредственному силовому взаимодействию импульсов (количеств движения) при изменении одного из них. Такое взаимодействие возможно по нашей системе и оно, скорее всего, обуславливает силу инерции.

Вариант принадлежности найденного значения коэффициента инерционному силовому взаимодействию, наблюдаемому в природе, представляется наиболее вероятным, однако попробуем поискать и другие возможные варианты, дающие более скромную оценку силового взаимодействия, принадлежащего, например, взаимодействию вращающихся (или обращающихся) масс.

Системные свойства позволяют выразить нам объемную плотность массы как отношение четвертой степени искомого коэффициента к третьей степени магнитного момента/(M0/I0). Если принять в качестве магнитного момента величину магнетона Бора (вспомним, что при использовании этого параметра мы получили иное значение для квантуемой величины массы), то значение для искомого коэффициента будет следующим:

1,582798006*10–19 кг*м. (35)

Однако и при таком значении коэффициента силовое взаимодействие вращающихся или обращающихся масс должно быть очень внушительным на фоне других силовых взаимодействий.

Предположим еще один возможный вариант. Не исключено, что в системе размерностей MLT константа данного гравидинамического силового взаимодействия будет равна 1кг*м, что также следует из размерностных соотношений. Приняв значение константы гравидинамического взаимодействия , оценим величину силы, возможно возникающей при этом взаимодействии - для экспериментальной установки с реально исполнимыми параметрами. Например, рассчитаем силу взаимодействия двух масс величиной по 1кг, обращающихся на радиусе 0,1м с линейной скоростью 1м/с. Примем, что обращающиеся массы расположены на расстоянии 1м друг от друга. Выполняем вычисления по формуле (30):

7,957747155*10–4 H. (36) 

Силовое взаимодействие такой величины вполне возможно зафиксировать в лабораторном эксперименте.

Теперь попробуем оценить, при том же значении той же константы, силу взаимодействия двух вращающихся масс. Два тела массой по 1 кг, выполненные в виде цилиндров радиусом 0,1 м, вращаются на расстоянии 1 м друг от друга с угловой скоростью 1 рад/с. Момент инерции цилиндрического тела, вращающегося вокруг оси симметрии, равен половине произведения массы на квадрат его радиуса. Тогда формула (30), по идее, должна приобрести следующий вид: 

(37) 

Вычисления по этой формуле дают следующий результат: 

1,989436789*10–6 H. (38) 

Данное значение силы, на наш взгляд, тоже вполне возможно зафиксировать в лабораторном эксперименте.

Результаты поиска аналитических выражений и отдельных вычислений по оценке гравидинамических силовых взаимодействий приведены в таблице 2.

Таблица 2

Гравидинамические силовые взаимодействия, существование которых предсказывается системой физических величин 

п/п

 

Системные соотношения, указывающие на существование гравидинамических силовых взаимодействий

Возможные точные аналитические соотношения для этих сил

1.

 

 

 

 

 

2.

 

 

 

 

 

3.

 

(взаимодействие движущихся масс)

 

 

 


Сила*ρm = (m/t)2 /r2

(взаимодействие токов масс, меняющихся масс или вращающихся масс)

 

 

 


Сила*(Il)КВ(M0/I0) = (mvr1/r2)2=(mΔv)(Σmv)

(силы инерции, а также возможное взаимодействие вращающихся или обращающихся масс)

= [M1L]

9,3295972*10–27 м/кг


= [ML–3]

= 6,688249*1099 кг/м3


= [ML]

(Il)КВ(M0/I0) = = 3,225752*10–44 кгм

Другие возможные варианты: 1,582798006*10–19 кгм.

1 кгм.

По вышеизложенному можно сделать следующие выводы: гравидинамическое взаимодействие токов масс или меняющихся масс должно быть ничтожно по своей силе, однако взаимодействие вращающихся (или обращающихся масс) должно быть сравнительно сильным (может быть, даже очень сильным).

Силовое взаимодействие движущихся масс по своей величине занимает промежуточное положение, причем оно всегда будет слабее известного нам гравистатического взаимодействия. Гравидинамическое силовое взаимодействие движущихся масс заметным образом должно обнаруживаться только при скоростях движения, близких к скорости распространения гравитационных волн. Эта скорость предположительно равна скорости света или даже превышает ее.

Таким образом можно констатировать, что наиболее мощное гравидинамическое взаимодействие, по всей видимости, определяется силами инерции, возникающими при изменении количества движения у испытуемых тел и при наличии неизмеримо (вернее, чудовищно) большего количества движения у всех окружающих материальных тел. Более глубинный механизм действия сил инерции может быть связан с наличием у материальных тел внутреннего вращательного движения. Остальные гравидинамические силовые взаимодействия малозначительны по величине.

Несмотря на очевидную слабость большинства рассмотренных гравидинамических сил и взаимодействий, они, судя по всему, должны заметным образом проявлять себя в космосе при громадных значениях масс и в космическом масштабе времени.

Системой предсказывается возможность существования в природе и внепространственных силовых взаимодействий между некоторыми изменяющимися во времени однотипными физическими величинами. Взаимодействия такого типа, похоже, должны обладать мгновенностью передачи на любые расстояния.

ОБЩИЕ ВЫВОДЫ: 

1. Общая система физических величин, построенная на базе системы физических величин в LT размерности, выражает в явной форме общее расположение элементов – физических величин и для всех остальных систем размерностей, в том числе и для системы СИ. Однако некоторая часть физических величин в иных системах размерностей оказывается закамуфлирована, в частности, в СИ - размерностью и значением гравитационной постоянной, а также соотношением единиц массы и силы электрического тока.

2. Все физические величины общей системы органически взаимосвязаны друг с другом по принципу “все в каждом и каждое во всем”. Взаимосвязь выражается в виде закономерных соотношений между единичными или квантованными значениями физических величин, достаточно легко определяемых из самой системы.

3. На примере системы СИ показана возможность нахождения закономерных соотношений между различными физическими величинами, входящими в общую систему. Анализом возможных силовых взаимодействий, которые согласно системе физических величин формально имеют право на существование, предсказано существование ряда новых силовых взаимодействий, между отдельными физическими величинами, разнесенными в пространстве.

Предсказывается также существование внепространственных силовых взаимодействий, возникающих между меняющимися во времени физическими величинами. Возможно, что такие взаимодействия не подчиняются принципу ограничения скорости их распространения - скоростью света. 

ЛИТЕРАТУРА: 

  1. Чуев А.С. Физическая картина мира в размерности “длина-время”. Серия “Информатизация России на пороге XXI века”. – М.: СИНТЕГ, 1999 – 96 с. (Текст книги имеется на сайте автора: www.chuev.narod.ru ).

  2. Физические величины: Справочник/ А.Б. Бабичев и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. – М.: Энергоатомиздат, 1991 - 1232 с.

  3. Чуев А.С. Фундаментальные физические постоянные – взаимосвязь размерностей и единство числовых значений в системе размерностей - LT/ www.rusnauka.narod.ru

  4. www.eksr.narod.ru 

Справочные значения используемых в работе константных физических величин системы СИ /2/:

Дата публикации: 3 марта 2003
Источник: SciTecLibrary.ru

Вы можете оставить свой комментарий по этой статье или прочитать мнения других в следующих разделах ФОРУМА:
Свернуть Защита интеллектуальной собственности и авторских прав
Диспуты по темам изобретательства. Вопросы по изобретениям, проблемы на пути изобретателей и методы их решения.
Патентование. Все о патентовании изобретений, полезных моделей, промышленных образцов и товарных знаков.
Нерешенные задачи. Здесь идет обсуждение нерешенных задач: безопорный двигатель, вечный двигатель, преодоление гравитации и пр.
Свернуть Точные науки и дисциплины
Дебаты по Теории Относительности Эйнштейна. Все кому не лень хотят опровергнуть Теорию Относительности Эйнштейна. Вам предоставляется слово для аргументации.
Физика, астрономия, математические решения. Физико-математические вопросы, наблюдения, исследования, теории и их решение.
Физика альтернативная. Новые взгляды на физические законы, теории, эксперименты, не вписывающиеся в общепринятые законы физики.
Teхника, узлы, механизмы, электроника и аппаратура. Все про технику, приборы, детали, узлы и механизмы. Электроника, компьютеры, программное обеспечение. Новые технические решения в самых разных областях.
Биология, Генетика, Все о жизни. Генетика и другие вопросы биологии. Их развитие. Медицина. Биотехнологии, агротехника и сельское хозяйство. Эволюционные теории и альтернативные им.
Химия. Вопросы по химическим технологиям, разработкам и применению химических материалов. Химические элементы и их свойства.
Геология, все о Земле и ее обитателях. Геология, метеорология, антропология, сейсмология, атмосферные явления и непознанные эффекты природы.
Свернуть Мозговой штурм
Генератор решений. Здесь Вы можете заработать реальные деньги, помогая решать фирмам, предприятиям и частным лицам те или иные технические задачи, которые перед ними стоят. Те, кто ставят задачи перед участниками должны обозначить гонорар за ее решение и перевести указанную сумму на общий счет генератора.
Головоломки. Если у Вас есть желание поломать голову над интересными логическими задачами - Вам сюда.
Гипотезы. В этой теме идет обсуждение гипотез и предположений, основанных чисто на теории и логике.
Найди ляп! Этот раздел для тех, кто хочет мысленно расслабиться. Он посвящен задачам по поискам ляпов, которые встречаются в литературе, интернете, кино и на телевидении.
Свернуть Взгляд в будущее и настоящее
Глобальные темы. Вопросы касающиеся всех. Глобальные угрозы и злободневные темы современности.
Наука и ее развитие. Все о развитии науки, направлениях и перспективах движения научной мысли и знаний.
Новая Цивилизация. Принципы социального устройства новой цивилизации. Увеличение роли созидательного интеллекта... Отдалённые перспективы развития человечества...
Вопросы без ответов. Этот раздел посвящен вопросам и проблемам, которые до сих пор не решены. Предлагайте свои решения.
Военная стратегия и тактика современных боевых действий. Об особенностях современного военного искусства. Проблемные вопросы теории и практики подготовки вооруженных сил к войне, её планирование и ведение в различных конфликтах на планете.
Свернуть Гуманитарные науки и дисциплины
Философские дискуссии. Диспуты по вопросам жизни, сознания, бытия и иных философских понятий.
Экономика. Вопросы по экономике и о путях развития России и других стран.
Социология, Политология, Психология. В этом разделе обсуждаются вопросы, как отдельных частных исследований данных наук, так и проблема соотношения этих наук с остальными.
Образование. Все об образовании: как учить, кому учить, чему учить и кого учить.
Религия и атеизм. Вопросы религий и атеистические взгляды, религиозные споры.

Хотите разместить свою статью или публикацию, чтобы ее читали все?
Как это сделать - узнайте здесь.

Назад

 
О проекте Контакты Архив старого сайта

Copyright © SciTecLibrary © 2000-2017

Агентство научно-технической информации Научно-техническая библиотека SciTecLibrary. Свид. ФС77-20137 от 23.11.2004.